skip to main content


Search for: All records

Creators/Authors contains: "Houseman, Gregory R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and Aims

    Species diversity is expected to increase with environmental heterogeneity. For plant communities, this pattern has been confirmed by numerous observational studies. Yet, experimental studies yield inconsistent results potentially because of how experiments create soil heterogeneity or because seeds were sown homogeneously. Using a field experiment, we tested how soil heterogeneity, plant spatial aggregation via seed arrival, and grain size influence plant species richness in a restored grassland.

    Methods

    We manipulated soil heterogeneity and seed arrival in 0.2 × 0.2 or 0.4 × 04 m patches within each 4.0 × 4.6 m plot and allowed community assembly to occur for 4 growing seasons.

    Results

    Despite quantifiable soil differences, soil heterogeneity did not impact total or sown species richness, but did weakly influence non-sown richness. Richness differences were driven by non-sown plant species that likely exhibited higher establishment in aggregated plots due to decreased interspecific competition and conspecific facilitation.

    Conclusion

    Our results suggest that fine-scale soil heterogeneity weakly affects prairie plant diversity, but heterogeneous plant spatial structure can have a stronger effect on diversity. These results suggest that plant colonization may be the primary source of environmental heterogeneity and may explain inconsistent results from soil heterogeneity experiments.

     
    more » « less
  2. Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition – whether abiotic or host-dependent – remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.

     
    more » « less
  3. Abstract

    Univariate and multivariate methods are commonly used to explore the spatial and temporal dynamics of ecological communities, but each has limitations, including oversimplification or abstraction of communities. Rank abundance curves (RACs) potentially integrate these existing methodologies by detailing species‐level community changes. Here, we had three goals: first, to simplify analysis of community dynamics by developing a coordinated set of R functions, and second, to demystify the relationships among univariate, multivariate, andRACs measures, and examine how each is influenced by the community parameters as well as data collection methods. We developed new functions for studying temporal changes and spatial differences in RACs in an update to the R package library(“codyn”), alongside other new functions to calculate univariate and multivariate measures of community dynamics. We also developed a new approach to studying changes in the shape ofRACcurves. The R package update presented here increases the accessibility of univariate and multivariate measures of community change over time and difference over space. Next, we use simulated and real data to assess theRACand multivariate measures that are output from our new functions, studying (1) if they are influenced by species richness and evenness, temporal turnover, and spatial variability and (2) how the measures are related to each other. Lastly, we explore the use of the measures with an example from a long‐term nutrient addition experiment. We find that theRACand multivariate measures are not sensitive to species richness and evenness and that all the measures detail unique aspects of temporal change or spatial differences. We also find that species reordering is the strongest correlate of a multivariate measure of compositional change and explains most community change observed in long‐term nutrient addition experiment. Overall, we show that species reordering is potentially an understudied determinant of community changes over time or differences between treatments. The functions developed here should enhance the use of RACs to further explore the dynamics of ecological communities.

     
    more » « less
  4. Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously. 
    more » « less